Explicit combinatorial interpretation of Kerov character polynomials as numbers of permutation factorizations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Explicit formulae for Kerov polynomials

We prove two formulae expressing the Kerov polynomial Σk as a weighted sum over the set of noncrossing partitions of the set {1, . . . , k + 1}. We also give a combinatorial description of a family of symmetric functions specializing in the coefficients of Σk .

متن کامل

Combinatorial interpretation and positivity of Kerov’s character polynomials

Kerov’s polynomials give irreducible character values of the symmetric group in term of the free cumulants of the associated Young diagram. Using a combinatorial approach with maps, we prove in this article a positivity result on their coefficients, which extends a conjecture of S. Kerov. Résumé. Les polynômes de Kerov expriment les valeurs des caractères irréductibles du groupe symmétrique en ...

متن کامل

Asymptotics of characters of symmetric groups: Structure of Kerov character polynomials

We study asymptotics of characters of the symmetric groups on a fixed conjugacy class. It was proved by Kerov that such a character can be expressed as a polynomial in free cumulants of the Young diagram (certain functionals describing the shape of the Young diagram). We show that for each genus there exists a universal symmetric polynomial which gives the coefficients of the part of Kerov char...

متن کامل

Explicit Factorizations of Cyclotomic and Dickson Polynomials over Finite Fields

We give, over a finite field Fq, explicit factorizations into a product of irreducible polynomials, of the cyclotomic polynomials of order 3 · 2, the Dickson polynomials of the first kind of order 3 · 2 and the Dickson polynomials of the second kind of order 3 · 2 − 1.

متن کامل

Explicit factorizations of cyclotomic polynomials over finite fields

In this paper, we make an attempt to study the explicit factorization of 2.7-th cyclotomic polynomials over finite field Fq when q ≡ 1(mod 4) into a product of distinct monic irreducible polynomials, where q is a power of an odd prime. AMS Subject Classification: 11T06, 11T22, 12Y05

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2010

ISSN: 0001-8708

DOI: 10.1016/j.aim.2010.02.011